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Abstract—Since the initial proposal of the Optimal Transmis-
sion Switching problem, a mixed integer program and different
heuristics have been presented to achieve considerable cost
reduction within a practical time frame. This paper proposes
two machine learning based methods to further reduce the
computation time as well as cutting down the generation cost. The
first method is to apply machine learning algorithms to prioritize
the possible line switching actions. The second method is to use
machine learning to develop effective algorithm selectors among
transmission switching algorithms suggested in the literature. The
proposed methods are tested on IEEE 118-bus test case and
FERC 13867-bus test case. The results demonstrated that both
line selection and algorithm selection offer performance benefits
over using the single transmission switching algorithm in the
previous literature.

Index Terms—Transmission switching, machine learning, algo-
rithm selection

NOMENCLATURE

Sets and Indices:
n Bus.
N Set of all buses.
g Generator.
Gn Set of generators at bus n.
k Transmission line.
K Set of all lines.
K̂ Set of transmission lines in service.
K̄ Set of transmission lines out of service.
Kto
n Subset of lines with n as ”to” bus.

Kfr
n Subset of lines with n as ”from” bus.

ntok ”To” bus for linke k.
nfrk ”From” bus for linke k.
Parameters:
Bk Susceptance of line k.
cg Unit cost of power from generator g.
PMg Maximum power from generator g.

Pmg Minimum power from generator g.
PMk Maximum power flow on line k.
Pmk Minimum power flow on line k.
θM Maximum voltage angle difference.
θm Minimum voltage angle difference.
P demn Demand load at bus n.
Decision Variables:
Pg Power from generator g.
Pg Power flow on line k.
θn Voltage angle at bus n.
zk Decision to have line k on or off. Binary: 0

(out of service) /1 (in service).
sk Decision to switch line k. Binary: 0 (no switch)

/1 (switch).

I. INTRODUCTIONS

Power networks, composed of the generators, loads and
transmission lines, are typically large and complexly inter-
connected systems. Power dispatched from generators flow to
loads to satisfy their respective demand, according to laws of
physics and satisfying the power flow limits of transmission
lines. The power flow on an individual transmission line is
therefore, influenced by the topology of the network, the
properties of its components as well as the loading and
generation pattern. This makes cost reduction by the transmis-
sion switching, which changes the topology of the network,
possible.

Though the transmission network is traditionally viewed as
a static component of the power system, system operators
have been using transmission switching as a way to tackle
the voltage control problem. Fisher et al. [1] first proposed a
formal treatment of transmission switching as an optimization
problem aiming at reducing the dispatching cost over the entire
network. The proposed DCOPF based Optimal Transmission
Switching (OTS) is a mixed integer program. It results in more
than 25% cost savings on IEEE 118 bus test case, but also



take a very long runtime for a good solution, which prohibits
it from practical application. Several heuristics have been
investigated to tackle the computational challenge caused by
the inherent curse of dimensionality of the MIP formulation.
There are two mainstream heuristics. The first is to consider
possible line switches one at a time and solve a series of
DCOPF problems, which could also be time consuming if
considering all the possible line switches. The authors in [2]
show that high performance computing can be used to paral-
lelize the computation and improve performance. A priority
list can be established by using a sensitivity factor developed
from the dual problem to find the desirable line switches
faster [3]. Alternatively, authors in [4] use the power transfer
distribution factors (PTDFs) and ”flow canceling transactions”,
which eliminates the need to solve DCOPFs. This makes the
solution more scalable in network size and faster. However,
computing the flow cancelling transactions is practical only
for a limited number of line switches.

From a broader perspective, selecting the best algorithm to
solve a given problem has been the subject of many studies.
The algorithm selection problem, originally described by Rice
[5] , has attracted a great deal of attention over the last decades.
With the development of various algorithms for a single
application, researchers have come to realize it is very difficult
to find one best algorithm for the application with different
properties or data inputs. The algorithm selection problem can
be viewed as a learning problem: the aim is to learn a model
that captures the relationship between the properties of the
datasets and the algorithms, in particular their performance.
This model can then be used to predict the most suitable
algorithm for a given new dataset. Machine learning has a rich
history in algorithm selection for various applications. It is a
classification problem which are trained by supervised learning
using a number of training examples consisting of observations
labelled with the correct class. The selector is trained to pick
the best algorithm with inputs being parameters of the system’s
status. Many machine learning techniques for producing clas-
sifiers have been used to create algorithm selectors. A meta-
learning inspired framework for analyzing the performance
of heuristics for optimization problems by neural networks is
proposed by [7]. The effectiveness of an integrated algorithm
selection method is demonstrated in simulation systems with
decision trees when users have limited knowledge of the
underlying algorithms and their implementations in [8]. The
authors of [9] show the performance of support vector machine
based automatic tuning system for computational kernels. The
authors of [10] present network state based algorithm selectors
for the power flow management and show performance benefit
based on IEEE 14- and 57-bus network and a real network.

This paper is structured as follows: Section II provides
background on algorithm selection and machine learning.
Section III illustrates the test case networks. Section IV
presents the existing transmission switching heuristics based
on DCOPF and a new machine learning based line selection al-
gorithm and compares their performances. Section V describes
the algorithm selector developed with machine learning for

transmission switching problems and shows the performance
benefits of such selectors. Section VI discusses the perfor-
mance improvement in terms of both computation time and
cost reduction brought by these two machine learning based
methods and Section VII gives concluding remarks.

II. ALGORITHM SELECTION

A. Algorithm Selection Problem

Following Rice [5] and Vanschoren [6], the Algorithm
Selection Problem can be characterized by the following four
elements:

• The Problem Space (P ), characterized by all the inputs
x in the dataset used for the study. In this paper each x
represents a different network state.

• The Feature Space (F ), characterized by the key charac-
teristics produced by a feature extraction process f(x),
that can be used to represent the problem. In transmission
switching features it could be the line status or the loading
conditions of each network state.

• The algorithm Space (A), containing the set of algorithms
from which we can obtain a solution to a given problem.
In this paper it contains heuristics proposed to solve the
transmission switching problem.

• The performance measures space (Y ), containing ranges
of measures that characterize the behavior of an algorithm
on a given problem. In this paper the performance is
measured by the cost reduction from the line switches.

Solving the algorithm selection problem can be stated as
follows:

For a given problem instance x ∈ P , with features f(x) ∈
F , find the selection mapping S(f(x)) into the algorithm space
A, such that the selected algorithm α ∈ A maximize the
performance mapping y(α ∈ A) ∈ Y .

B. Algorithm Selection Methodologies

In an ideal world, we would know enough information
about the algorithms and dataset to choose the most suited
algorithm based on certain characteristics of a problem to
solve. However in reality, the systems like power grid are too
vast and complex for such analysis. Due to the fact that a
large amount of data is involved in the various applications
including power flow problems, machine learning is a natural
choice to derive selectors. Several most prevailing machine
learning methodologies are discussed here.

1) Case-based reasoning: As first introduced in [11], case-
based reasoning chooses algorithms for the existing problem
with knowledge of past problems. Instead of trying to learn
what characteristics affect the performance, it just used the
performances of past known problems to infer performance
on new problems. The most intuitive and commonly used
case-based reasoning algorithm is nearest neighbor classifier.
WEKA IBk nearest neighbor classifier with 10 nearest neigh-
bors is used in this paper.



2) Classification: Intuitively, algorithm selection is a sim-
ple classification problem - label each problem instance with
the algorithm from the algorithm space that should be used
to solve it. We can solve this classification problem by a
classifier that discriminates between the algorithms based on
the characteristics of the problem.

Many of the numerous machine learning techniques for pro-
ducing classifiers have been used to create algorithm selectors,
most popular two being artificial neural networks and decision
trees. In this paper we use ”MultilayerPerceptron” ANN im-
plementation and ”J48” implementation of classification tree
from Weka machine learning software.

III. CASE STUDY NETWORKS

A. IEEE 118-bus Network

The first case study network is a modified version of the
IEEE 118-bus system. It consists of 118 buses, 19 generators,
and 186 lines. Ratings have been assigned to a number of
the network branches so that several lines are fully loaded,
or congested, thus creating conditions where the transmission
switching can be applied to alleviate the overloads. To train
and test the algorithms and selectors, different network states
were randomly created covering a range of credible conditions.
In each network state, the total load and each of the gener-
ators’ output were scaled by random variables drawn from
independent uniform distributions. 30000 network states were
generated for training and another 10000 were generated for
performance evaluation.

B. FERC 13867-bus Network

The second test case is FERC 13867-bus Network de-
rived from the data set we obtained from PJM Regional
Transmission Organization. The system consists of 13,867
buses, 1,011 generators and 18,824 branches. Compared to
the IEEE 118-bus system, this network is much more realistic
and representative of a industrial scale power network. We
also obtained the loading condition of a typical summer day
which was used to produce 4000 network states drawn from
independent uniform distributions for the purpose of training
and evaluation. Note that for this network we used fewer data
for training and evaluation due to computational power limit.

IV. TRANSMISSION SWITCHING HEURISTICS

A. Model Description

Based on the Optimal Transmission Switching model in
[1], we present the following single period economic dispatch
model based on DCOPF. It is a mixed integer program where
zk represents the switching decision. zk = 1 means the line
is on and zk = 0 means the line is off. We partition the set
of lines K = K̂ ∪ K̄ in the network into two sets of lines:
K̂ representing the set of lines in service and K̄ representing
the set of lines out of service. The Kirchhoff’s voltage and
current laws are linearized and losses and reactive power flows
are ignored. The objective is to minimize the generation cost.
Voltage angle limits are imposed by Eq. (1b) and the capacity
limits on generating unites are imposed by Eq. (1c). Eq. (1d)

ensures the power balance for each bus. For lines originally
in service, Eq. (1e) makes sure the flow respects the line flow
limits if it stays on and the flow is zero if it is to be switched
off. M in Eqs. (1f) and (1g) is a very large number that makes
sure Kirchhoff’s law holds when the line stays on. When the
line is out of service at the beginning, the flow on it must be
zero, as Eqs. (1h) and (1i) states.

min
θn,Pg,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t.

θmn ≤ θ ≤ θMn , k ∈ K (1a)

Pmg ≤ Pg ≤ PMg , n ∈ N (1b)∑
k∈Kto

n

Pk −
∑

k∈Kfr
n

Pk +
∑
g∈Gn

Pg = P demn , n ∈ N (1c)

Pmk zk ≤ Pk ≤ PMk zk, k ∈ K̂ (1d)

− Pk + zkBk(θnfr
k
− θnto

k
) + (1− zk)M ≥ 0, k ∈ K̂ (1e)

− Pk + zkBk(θnfr
k
− θnto

k
)− (1− zk)M ≤ 0, k ∈ K̂ (1f)

0 ≤ Pk ≤ 0, k ∈ K̄ (1g)
Pk = 0, k ∈ K̄ (1h)
zk ∈ {0, 1} (1i)

The above model, being a mixed integer program, faces
practical computational challenges. Even for the IEEE 118-
bus test case it takes more than half an hour to solve within
9e-6 optimality gap on a four processor laptop. It prompts a
greedy approach which only considers one line switch at a
time. The following modified DCOPF, a linear program, can
be solved fast and it will give the new cost after the line switch
if we move the line in consideration from set K̂ to K̄.

min
θn,Pg,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t.

θmn ≤ θ ≤ θMn , k ∈ K (2a)

Pmg ≤ Pg ≤ PMg , n ∈ N (2b)∑
k∈Kto

n

Pk −
∑

k∈Kfr
n

Pk +
∑
g∈Gn

Pg = P demn , n ∈ N (2c)

Pmk ≤ Pk ≤ PMk , k ∈ K̂ (2d)

Pk = Bk(θnfr
k
− θnto

k
), k ∈ K̂ (2e)

0 ≤ Pk ≤ 0, k ∈ K̄ (2f)
Pk = 0, k ∈ K̄ (2g)

Following the idea of Fuller [3], in order to come up with a
reasonable criterion for selecting which lines to switch, we
would like to know the sensitivity of the optimal cost on
the switching action. For this reason, we express the above
DCOPF equivalently as the following nonlinear program:



min
θn,Pg,Pk

∑
n∈N

∑
g∈Gn

cgPg (3a)

s.t.
(2b), 2(c) and∑
k∈Kto

n

Pk −
∑

k∈Kfr
n

Pk +
∑
g∈Gn

Pg = P demn , n ∈ N, [ρn] (3b)

Pmk (1− sk) ≤ Pk ≤ PMk (1− sk), k ∈ K̂, [λ−k , λ
+
k ] (3c)

Pmk sk ≤ Pk ≤ PMk sk, k ∈ K̄, [λ−k , λ
+
k ] (3d)

Pk = Bk(1− sk)(θnfr
k
− θnto

k
), k ∈ K̂, [ψk] (3e)

Pk = Bksk(θnfr
k
− θnto

k
), k ∈ K̄, [ψk] (3f)

sk = 0, k ∈ K, [γk] (3g)

The above model 3 is mathematically equivalent to model 1,
but more complicated by introducing a new variable sk which
represents the switching decision. For a line in service (k ∈
K̂), s = 1 means it switches the line off and s = 0 means the
line stays on, and vice versa. The dual variable γ indicates the
rate of change of the objective function with respect to a small
increase in the right hand side of Eq. (3g). Therefore it can be
used as an indicator of possible cost reduction resulting from
a line switch. A priority list can be produced by ranking the
lines by ordering their respective γ from smallest to the largest
(more negative γ indicates larger possible decrease in objective
function, i.e. higher cost reduction). From KKT conditions we
can derive the following fomular:

γk = PMk λ+k + Pmk λ
−
k +Bk(θnfr

k
− θnto

k
)ψk, k ∈ K̄ (4a)

γk = Pk(ρnfr
k
− ρnto

k
)ψk, k ∈ K̂ (4b)

We can see that all the variables on the right hand side are
either parameters of the problem or the optimal primal/dual
variables from model 2. Calculating γ doesn’t necessarily re-
quire solving model 3, a nonlinear program.It can be obtained
by just solving a linear program: model 2. This drastically
reduces the computation time and makes producing a priority
list operationally feasible.

B. Transmission Switching Algorithms

1) Enumeration of All Lines: The first algorithm is a direct
enumeration of all the lines. For every possible line switch,
a DCOPF with the switched line is run to compare the cost
after the line switch with the original cost without the line
switch, We select the line switching action which results in
the greatest improvement. We iterate until we can find no
improving switching action.

2) Line Selection with Priority Listing: The second algo-
rithm involves ranking the lines according to the sensitivity
factors computed in Eqs. (4a), (4b). In this algorithm we run
DCOPF with a single switched line according the the priority
list and implement the first switching action that results in an
improvement. We first evaluates the first k lines in the priority
list. If a cost reduction is found, we implement the line switch

with the most cost reduction and stop. Otherwise we move on
to next k lines until the list is exhausted.

3) Line Selection with Machine Learning: Due to the nature
of the power network as a large and complex system and the
fact that most properties of the network remain unchanged
after a line switch, machine learning seems a natural choice
for the line selection. 30000 test cases are created for IEEE
network and 3000 test cases are created for FERC network,
for training, tuning and validation. First we run the line
enumeration algorithm on all the test cases so we have the
complete information on the performances of every line switch
which we can label now. Then another 10000 test cases of
IEEE network and 1000 test cases of FERC network are used
to evaluate the performance of the machine learning algorithm.

We used three established machine learning algorithms
which are 10 nearest neighbor, artificial neural network and
decision tree, as introduced in Section II.B . These are the most
used classification methods that can take in the the parameters
and loading conditions of the power network and produce a list
of high priority line switches. The process of this algorithm is
very similar to the line selection with priority listing. The only
difference is that here we use machine learning to produce the
list of lines which are worth evaluating than others.

C. Results

The average cost reductions from the three transmission
switching algorithms described in the previous section are
listed in Table I. Due to running time constraints we only
perform 10 line switches at maximum for each case. After
10 switches the cost reduction gets very close to best know
optimal for the 118-bus IEEE network, but not so for FERC
network, understandably due to the size of the FERC model.
We can see that for non-machine learning algorithms line
enumeration always performs better than line selection with
priority listing. This is expected since line enumeration is a
generally more robust algorithm and at every step it examines
every single possible line switch. However they both perform
worse than 10 nearest neighbor and artificial neural network
based line selection. The best performer is neural network
with little surprise for its consistent impressive performance
with continuous-valued inputs, high tolerance to noisy data and
ability to classify untrained patterns. The idea behind K nearest
neighbor is simple but here it well captures the property of the
power network that the switching action of a similar network
state can be highly relevant and suggestive. The decision tree
approach performs worse than others. The possible explanation
is that it is most suitable for linear separable classes which is
not the case for power systems. And data for transmission
switching problem contains a lot of noise and outlier which
decision tree approach is sensative to.

A significant advantage of the machine learning based line
selection algorithm, besides its superior performance in cost
reduction, is that once it completes the training, the runtime
to select a line switch with cost reduction is negligible. In
the previous algorithms, solving DCOPF and line selection
are done online, which means for a practical power network



TABLE I
AVERAGE % COST REDUCTIONS OF TRANSMISSION SWITCHING

ALGORITHMS (10 SWITCHES)

Algorithm IEEE Case FERC Case
Line Enumeration 22.34% 1.94%

Line Selection with Priority Listing 21.86% 1.35%
10 Nearest Neighbor 22.50% 2.50%

ANN 23.79% 2.95%
DT 17.80% 1.21%

such as FERC network, it can take hours on a commercial
laptop. It is especially critical for line enumeration algorithm,
where a DCOPF optimization problem has to be solved at each
step and for every branch. However if we use the machine
learning approach, at each step we only need to examine
a few switches that the algorithm suggests, which takes a
few seconds, therefore saving computation power and time.
It makes the real time transmission switching practical within
the computational power of a system operator.

Fig. 1. Average % Cost Reduction for First 10 Switches(IEEE 118 bus Case)

Fig. 2. Average % Cost Reduction for First 10 Switches(FERC 13867 bus
Case)

V. ALGORITHM SELECTION FOR TRANSMISSION
SWITCHING

A. Generation of Algorithm Selector

As discussed in Section I, there are two mainstream trans-
mission switching formulations: one based on DCOPF and
the other with PTDF and flow canceling transactions. This

TABLE II
AVERAGE % COST REDUCTIONS OF TRANSMISSION SWITCHING

ALGORITHMS AND SELECTORS (10 SWITCHES)

Algorithm IEEE Case FERC Case
Line Enumeration 22.34% 1.94%

Line Selection with Piority Listing 21.86% 1.35%
PTDF Method 20.98% 1.40%

10 Nearest Neighbor Based Selector 22.87% 1.87%
ANN Based Selector 23.60% 2.93%
DT Based Selector 22.44% 2.56%
Oracle Selections 24.60% 3.24%

section presents a novel method for creating algorithm selec-
tors for transmission switching. In the algorithm space, three
algorithms are considered: line enumeration, line selection
with priority listing and PTDF based method. The first two
algorithms are discussed in Section IV.A. We use the PTDF
based algorithm as illustrated in [4]. The selectors are in the
form of classifiers that take measurements of the network as
input and provide an algorithm selection as output. To create
an algorithm selector, the following five steps are followed:

Step 1: Generate algorithm performance dataset to be
used for building selectors. For IEEE 118 Bus network, a
performance dataset is created by testing each algorithm on
30000 test cases generated for each network. The performance
datasets used to create the selectors, and the states within it
are separate from the 10000 test cases that are used for testing
the performance of the selectors and algorithms. For FERC
network, the procedure is similar except for the fact that only
3000 test cases are used for training and 1000 are used for
evaluation.

Step 2: Split the algorithm performance dataset into equal
parts for training, tuning and validation.

Step 3: Iterate over possible selection sets and create se-
lectors. In this step first we train a selector with training and
tuning parts of the dataset then evaluate the selectors with the
validation dataset.

Step 4: Re-split algorithm performance dataset into equal
parts for training and tuning.

Step 5: Take the most effective selector built in Step 3 and
re-train it.

We still use the same three machine learning algorithms: k
nearest neighbor, artificial neural network and decision tree,
described in Section II.B.

B. Results

Table II shows the percentage cost reduction of individual
transmission switching algorithms and the algorithm selectors
developed in Section V.A, for both IEEE 118-bus network
and FERC network respectively. The last row of the tables
shows the cost reduction achieved based on an ”oracle” that
has perfect a priori knowledge of which algorithm will be
most effective. In other words, this is the performance achieved
with optimal algorithm selection decisions made for each line
switch. Note that it does not mean the line selection is the
optimal.



For IEEE 118-bus test case, all three selectors show per-
formance improvement from the best performer of individual
transmission switching algorithm - Line Enumeration. The cost
reduction improvement is small, less than 2% in the best case.
This is expected since the individual algorithm’s solution gets
very close to the best known optimal: 24.88%. Even with
optimal algorithm selection at every step the cost reduction
is 24.60%, only one percent higher than our best selector
performer - ANN based selector.

The selectors shows more performance improvement for
FERC test case. Even though the nearest neighbor based
selector performs worst than the line selection, the best per-
former - ANN based selector results in around 50% more cost
reduction than the best performer in the individual algorithm,
and doubles the cost reduction of the other two. It also gets
very close to the oracle selection, which means that the selector
wisely chooses the algorithms so that it captures most of the
benefits brought by the ability to select algorithms. DT based
selector shows considerable performance improvement from
the individual algorithms as well. In terms of computation
time, the selector itself adds negligible time to the computa-
tion since it just performs a linear calculation to select the
algorithm for use.

VI. DISCUSSION

Machine learning has been shown to be capable of im-
proving the performance of transmission switching algorithms
both by line selection and algorithm selection. When applied
to line selection, the appropriate machine learning algorithm
brings the benefits in both cost reduction and computation
time. It is notable that even though two of the machine learning
algorithms tested show more cost reduction, the third performs
worse than all the non-machine learning algorithms. If a single
objective of reducing cost is to be considered only, the use of
machine learning technique has to be carefully considered.

All three machine learning based selectors prove effective
in terms of cost reduction for both test cases. It shows
considerable improvement especially for the realistic FERC
test case. Due to the high complexity of the FERC network, it
is expected that no algorithm will always be the most effective,
therefore rendering algorithm selector useful. Even though
with the machine learning algorithm we tested, the selector
gets very close to oracle selection, it isn’t necessarily the best
selector there is. Although we tested it on two networks that
are drastically different in their scales and characteristics, it
doesn’t guarantee the performance improvement for all power
networks.

Line selection with machine learning can cut down the com-
putation time needed to achieve the cost reduction required.
However, both the machine learning based line selection and
algorithm selection require computational power and time to
train the model. The offline training time can be substantial,
especially for the algorithm selection. Without proper par-
allelization techniques for the machine learning methods, it
takes more than 10 hours to train the selector for FERC case.
The effective parallelization of the machine learning methods

and the increasing computational power within power systems
are the two critical factors that will speed up the process of
creating selectors.

VII. CONCLUSION

In this paper we demonstrated that machine learning can be
used to improve the performance of transmission switching
algorithms, by both line selection and algorithm selection.
We tested three machine learning algorithms for line selection
and two of them result in more cost reduction than the best
performer among individual algorithms. All machine learn-
ing algorithms can reduce the computation time in selecting
an effective line switch. The three machine learning based
algorithm selector all outperform the individual switching
algorithms. With the artificial neural network based selector
the cost reduction gets very close to the oracle selection.
The performance improvement is especially significant for
the FERC case, showing great benefit potential of algorithm
selectors for real life power networks.

The good performance of neural network and decision
tree methods on IEEE 118-bus and FERC test case doesn’t
guarantee that they can improve the performance for other
networks. Due to the complexity of the power network, the
machine learning algorithm used has to be carefully selected.
In the future, other power system applications should be
investigated to see if they would also benefit from algorithm
selection based on machine learning.
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